PRACTICE SET 42 [PAGE 77]

Practice Set 42 | Q 1.1 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
7 cm		

Solution: Radius, r = 7 cm

Diameter, $d = 2r = 2 \times 7 = 14$ cm

 \therefore Circumference, c = π d

 $= 22/7 \times 14$

= 22 × 2

= 44 cm

Radius (r)	Diameter (d)	Circumference (c)
7 cm	14 cm	44 cm

Practice Set 42 | Q 1.2 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
	28 cm	

Solution: Diameter, d = 28 cm

Radius, r =
$$\frac{d}{2} = \frac{28}{2}$$
 = 14 cm
∴ Circumference, c = 2 π r
= $2 \times \frac{22}{7} \times 14$
= 88 cm

Get More Learning Materials Here : 📕

Radius	Diameter	Circumference
(r)	(d)	(c)
14 cm	28 cm	88 cm

Practice Set 42 | Q 1.3 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
		616 cm

Solution: Circumference, c = 616 cm

Now, $c = 2\pi r$ (where 'r' is the radius)

$$\Rightarrow 616 = 2 \times \frac{22}{7} \times r$$
$$\Rightarrow r = 616 \times \frac{1}{2} \times \frac{7}{22}$$

So, radius = 98 cm Diameter, d = $2r = 2 \times 98 = 196$ cm

Radius (r)	Diameter (d)	Circumference (c)
98 cm	196 cm	616 cm

Practice Set 42 | Q 1.4 | Page 77

Complete the table below.

Radius (r)	Diameter (d)	Circumference (c)
		72.6 cm

Solution: Circumference, c = 72.6 cm

Now, $c = 2\pi r$ (where 'r' is the radius)

$$\Rightarrow 72.6 = 2 \times \frac{22}{7} \times r$$
$$\Rightarrow r = 72.6 \times \frac{1}{2} \times \frac{7}{22}$$

So, radius = 11.55 cm Diameter, d = $2r = 2 \times 11.55 = 23.1$ cm

Radius (r)	Diameter (d)	Circumference (c)
11.55 cm	23.1 cm	616 cm

Practice Set 42 | Q 2 | Page 77

If the circumference of a circle is 176 cm, find its radius.

Solution: Circumference, c = 176 cm

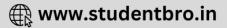
Now, $c = 2\pi r$ (where 'r' is the radius of circle)

$$\Rightarrow 176 = 2 \times \frac{22}{7} \times \mathbf{r}$$
$$\Rightarrow \mathbf{r} = 176 \times \frac{1}{2} \times \frac{7}{22}$$

 \Rightarrow r = 28

 \therefore Radius of the circle = 28 cm

Practice Set 42 | Q 3 | Page 77


The radius of a circular garden is 56 m. What would it cost to put a 4-round fence around this garden at a rate of 40 rupees per metre? **Solution:** Radius of the circular garden, r = 56 m Circumference of the circular garden, $c = 2\pi r$ $= 2 \times 22/7 \times 56$ = 352 m \therefore Length of the wire needed for one round of fencing = c = 352 m Cost of one round of fencing = length of wire x cost per metre $= 352 \times 40$ = 14080 rupees Cost of four round of fencing = $4 \times 14080 = 56320$ rupees

Practice Set 42 | Q 4 | Page 77

The wheel of a bullock cart has a diameter of 1.4 m. How many rotations will the wheel complete as the cart travels 1.1 km?

Get More Learning Materials Here :

Solution: Diameter of the wheel, d = 1.4 m

Circumference, $c = \pi d$

= 22/7 × 1.4

= 4.4 m

When the wheel completes 1 rotation, it covers a distance that is equal to its circumference.

So, the number of rotations taken by the wheel to cover 4.4 m = 1

Now, the wheel covered a total distance of 1.1 km.

We know that, 1 km = 1000 m

∴ 1.1 km = 1.1 × 1000 m = 1100 m

 \therefore Total number of rotations taken by wheel = $\frac{\text{total distance}}{\text{circumference}}$

$$= \frac{\frac{1100}{4.4}}{\frac{11000}{44}}$$

= 250

Hence, the wheel completes 250 rotations to cover a distance of

1.1 km.

PRACTICE SET 43 [PAGE 79]

Practice Set 43 | Q 1 | Page 79

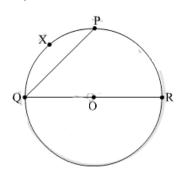
Choose the correct option.

If arc AXB and arc AYB are corresponding arcs and m(arc AXB) = 120° then m(arc AYB) = _____

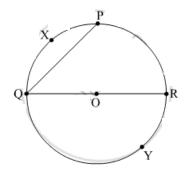
- 1. 140°
- 2. 60°
- 3. 240°
- 4. 160°

Solution: 240°

Get More Learning Materials Here : 📕


Explanation:

Consider that arc AXB is the minor arc and arc AYB is the corresponding major arc. It is known that, the measure of major arc = 360° – the measure of the corresponding minor arc.


We have, m(arc AXB) = 120° . So, m(arc AYB) = $360^{\circ} - m(arc AXB) = 360^{\circ} - 120^{\circ} = 240^{\circ}$ Hence, the correct answer is option 240° .

Practice Set 43 | Q 2 | Page 79

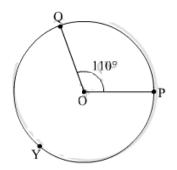
Some arcs are shown in the circle with centre 'O'. Write the names of the minor arcs, major arcs, and semicircular arcs from among them.

Solution: Minor arc: An arc of a circle having a measure of less than 180°. **Major arc:** An arc of a circle having a measure greater than 180°. **Semicircular arc:** An arc of a circle having a measure equal to 180°.

Names of minor arcs: (i) arc PXQ (ii) arc PR (iii) arc RY (iv) arc XP (v) arc XQ (vi) arc QY

Names of major arcs: (i) arc PYQ (ii) arc PQR

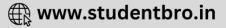
Get More Learning Materials Here : 📕


(iii) arc RQY (iv) arc XQP (v) arc QRX

Names of semicircular arcs: (i) arc QPR (ii) arc QYR

Practice Set 43 | Q 3 | Page 79

In a circle with centre O, the measure of a minor arc is 110°. What is the measure of the major arc PYQ?


Solution:

Suppose PQ is the minor arc and then $m(\text{arc PQ}) = 110^{\circ}$. We know that, measure of major arc = 360° – measure of corresponding minor arc. $\therefore m(\text{arc PYQ}) = 360^{\circ} - m(\text{arc PQ})$ = $360^{\circ} - 110^{\circ}$ = 250° Hence, the measure of major arc PYQ is 250° .

Get More Learning Materials Here :

